ABSTRACT

Title of Thesis:

DESIGN FOR JUST-IN-TIME: RESOURCE
DESIGN FOR SELF-TEACHING
COMPUTER SCIENCE AND ONLINE
LEARNING

Carrie Lindeman, Human-Computer Interaction

Master of Science 2020

Thesis Directed By: Assistant Professor, Dr. David Weintrop,
College of Information Studies and College of
Education
The goal of this study is to investigate how just-in-time resources may support
self-teaching for adult computer science learners who are new to coding. For people
learning computer science on their own, just-in-time resources can be essential for
solving problems. A popular online resource that computer scientists of all experience
levels rely on is Stack Overflow, a forum that has a question and answer format.

Resources like Stack Overflow can help new programmers problem-solve their code

without consulting a teacher or professor. However, these resources may be creating

barriers in the learning experience that should prepare them for future computer
science education. By observing learners using just-in-time resources and
interviewing learners about their habits, this thesis provides guidance on potential
design suggestions for better supporting users’ future learning. Understanding how
just-in-time materials currently support self-teaching for adult novice computer

science learners will provide the foundation for these designs.

RESOURCE DESIGN FOR SELF-TEACHING COMPUTER SCIENCE

by

Carrie Lucille Lindeman

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park, in partial fulfillment
of the requirements for the degree of
Human-Computer

Interaction
2020

Advisory Committee:

Professor David Weintrop, Chair
Professor Mega M. Subramaniam
Professor Margaret Chmiel

ProQuest Number: 27838167

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

ProQQuest.
/ \

ProQuest 27838167

Published by ProQuest LLC (2020). Copyright of the Dissertation is held by the Author.

All Rights Reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106 - 1346

www.manharaa.com

© Copyright by
Carrie Lindeman
2020

Acknowledgements 11

I gratefully acknowledge the support of my advisor, David Weintrop. This study was
dependent on his guidance and encouragement. I would also like to thank the
participants of the study for their generosity in their time and experience. I have great
appreciation for the contributions of my thesis committee, Mega Subramaniam and
Margaret Chmiel. Lastly, thank you to my fellow Master’s Thesis students, Kausalya
Ganesh and Shannon Fitzgerald who provided comradery and additional support

through the process of conducting this study.

1

Table of Contents
Abstract

Acknowledgements

Chapter 1: Introduction: Context of the Study of Self-Teaching in Computer
Science

Introduction

Positionality Statement

Research Questions

Outline

Literature Review
Challenges in Learning Computer Science
Who is Learning Computer Science?
Effectiveness of Online Learning
Using Just-In-Time Resources

Balancing Numerous Resources

Chapter 2: Content Comparison of Computer Science Curriculum and Online

Resources
Methods
Collecting Materials
Selecting Resource for Comparison
Findings

Summary

Chapter 3: Methods for Resource Observation and Evaluation of Design
Participant Recruitment
Participant Profiles
Semi-Structured Pre-Interview
Experiment Design
Semi-Structured Post-Activity Interview
Data Theming
Interviews

Coding Activity

Chapter 4: Novices Using Existing Resources (Phase 1)
Findings from Pre-Activity Interview
Approaches and Goals
Self-Teaching Resources

ii

O 0 N N DN B~ W = -

[
(-

11

13
13
13
14
14
18

20
20
22
24
25
28
29
29
29

31
31
31
33

Frustrations and Rewards

Summary of Pre-Activity Interview Findings
Findings from Coding Activity

Searching for Resources

Browsing Selected Resources and Adjusting Code Assignment

Summary of Coding Activity Findings
Findings from Post-Activity Interview

Challenges with the Prompts

General Challenges

Reaching Out for Help

Useful Resources vs Unuseful Resources

Summary of Post-Activity Interview Findings

Chapter 5: Designs for Self-Teaching Resources

Solution Sketches
Resource Searching Assistance
Code Anatomy Visualization
Code Sample Layout

Design Ideas from Themes

Final Design
Design Feature 1: Easy Navigation to Best Code Sample
Design Feature 2: Contextual Information within Code Samples
Design Feature 3: Distinguish Working and Not-working Code Samples
Design Feature 4: Support for Copying Exemplary Code
Design Feature 5: Syntax Highlighting in Code Samples

Summary of Design Changes

Chapter 6: Evaluation of Resource Design (Phase 3)
Findings from Pre-Activity Interview
Findings from Coding Activity

Reading More Text

Running Code

Interacting with Hovers

Using Question Code

Summary of Coding Activity Findings
Findings from Post-Activity Interview

Mismatched Example

Having a Different Plan

34
36
37
37
39
41
42
42
43
43
44
45

46
46
46
47
48
49
52
55
55
56
57
57
59

61
61
62
64
64
65
65
66
66
66
67

Looking for Tutorials
Summary of Post-Activity Interview Findings

Chapter 7: Conclusion
Discussion
Limitations
Implications
A Final Thought

Appendices
Appendix A: Participant Recruitment Text
Appendix B: Participant Consent Form
Appendix C: Demographic Survey
Appendix D: Semi-Structured Interview Questions
Appendix E: Code Activity Prompts
Appendix F: Searched Phrases

References

67
68

69
69
71
74
75

77
77
78
81
82
83
90

91

List of Tables

Table 1: Material Topics

Table 2: Content Comparison Topics Matrix
Table 3: Participant Information

Table 4: Code Activity Prompt Intentions
Table 5: Types of Self-Teaching Resources
Table 6: Categories of Frustrations

Table 7: Themes from Phase 1

Table 8: Most Searched Words

Table 9: Phase 1 Theme Subcategories
Table 10: Mapping of Design Ideas to Themes and Subcategories
Table 11: Design Changes

Table 12: Phase 3 Themes

Table 13: Phase 3 Theme Subcategories

15
16
22
26
33
35
37
38
39
50
59
62
62

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.

List of Figures

47
48
49
53
54
55
56
57
58
60

Chapter 1: Introduction: Context of the Study of Self-Teaching

in Computer Science

Introduction

The materials most often used by adult novice coders are not designed in a way that
prepares them for computer science instruction. Adults who are new to programming
may be consulting resources that include very little information about the foundations
of the concepts they are using in their code, or equally as detrimental, bury the key
contextual information in areas of the resource that are not utilized by this novice
population.

The technology field is expected to grow in the next 8 to 10 years, requiring a
workforce with diverse areas of technological expertise. The Bureau of Labor
statistics found that “[e]mployment of computer and information technology
occupations is projected to grow 12 percent from 2018 to 2028” which is likely to
increase the number of adults becoming new coders (Bureau of Labor Statistics,
2019).

In terms of online education, the field of computer science experienced a 13% growth
in online academic presence in 2018 according to the most recent Online Education
Trends Report from BestColleges. (2020 Online Education Trends Report, 2020) This
growth is expected to continue and is representative of how many individuals turn to

online education in the field of computer science. However, the first materials used

by novices may not be preparing them for the continued formal education they are
seeking through such institutions.

Many of the first resources they encounter would be categorized as just-in-time
learning resources. A just-in-time learning resource is one that provides the required
information immediately when it is needed. An example of a just-in-time learning
resource could be an online video that demonstrates how to fix a sink that can be
accessed immediately after the problem is discovered. In a coding context, many
forums and brief tutorials are used as just-in-time learning resources for novice coders
who are debugging their early programs.

An important distinction to note for this study, is that I am using the phrases
“computer science” and “coding” interchangeably. In the field of computer science,
coding and computer science are determined to be two different subjects.
Understandably, coding is seen as a component of executing the theories learned in
computer science. However, since this study is focused on novice learners, I am using
this phrase interchangeably. To a novice coder (specifically one who is self-teaching)
the difference between coding and computer science is difficult to comprehend. Since
most self-teaching novices are only introduced to the broader ideas of computer
science through coding. However, I acknowledge that there is a greater distinction
between the disciplines than is noted throughout the study by myself or the
participants.

Through gaining further understanding of how novice coders use these resources, we

can discover directed design changes to improve the learner experience. Much of the

existing work in this area focuses on tutorial style online resources, as opposed to

just-in-time learning resources.

Positionality Statement

In this section I present my own history with the content under investigation so as to
make clear the lens I bring to this work and situate myself with respect to the work
being done. My undergraduate education included numerous computer science
courses and as a student I became aware of how heavily I relied on just-in-time
computer science resources. The reliance on such materials was not as prevalent in
my courses for other disciplines in my experience. My awareness of the importance
of these materials increased when I served as a teaching assistant for introductory
computer science courses. I observed how students leveraged these resources and the
role these materials played in preparing students for further computer science
education. My experiences as a computer science teaching assistant give me the
insight to create a study about the just-in-time materials, but also introduces an
element of potential bias. I may be more inclined to think students need formal
computer science education since I used to be a part of formal teaching.
Additionally, I have worked as an instructional designer for over 5 years for
commercial businesses and higher education institutions. My experiences as an
instructional designer give me insight into the processes used by the resource
designers. However, this background could also bias me in the way I approach

creating materials for learning.

Research Questions

My study addresses three key research questions:
1. What are the content differences between just-in-time coding resources and
traditional computer science curriculum?
2. How do existing just-in-time learning solutions support self-teaching, adult
computer science learners who are new to coding?
3. What are some interface design changes for just-in-time learning solutions
that could better support the novice learner experience?
The purpose of Question 1, is to seek to understand the curriculum gap that may be
present between traditional computer science and just-in-time coding solutions. In
order to explore Question 1, I conducted a comparative analysis of content. I
catalogued the content of one, just-in-time resource page and compared it to an
aggregate list of topics from various university curricula. The findings from Question
1 were used to inform the designs I create later in the experiment which are

dependent on existing just-in-time coding solutions.

The purpose of Question 2, is to seek to gain insight into how this population uses the
existing resources leading to an understanding of their intentions and behaviors. I was
also able to observe what components of the resource the users do and do not interact
with, as well as what parts of the resources they leverage most effectively when
self-teaching. The method chosen to collect this information was semi-structured

interviews and observations of just-in-time resources in use through a coding

exercise. The interview and exercise were recorded and categorized into themes. The
outcomes of their coding exercises will also depend on how different the resources

are that they choose to use during the exercise.

The purpose of Question 3 is to determine interface design decisions that can be made
on a global, site-wide scale or by individual resource contributors that better support
novice self-teachers. I conducted a second experiment to user-test the design. These
design changes will be analyzed and potentially suggested with the goal of supporting

learners in their self-teaching experience.

Qutline

This thesis begins with a literature review found in Chapter 1 that outlines some of
the gaps in existing studies for adults novice coders.

Following the literature review, Chapter 2 outlines the methods and findings of the
content comparison between the curated materials by university professors and a
Stack Overflow page. This work is a preliminary foundation for the second half of the
study.

Chapter 3 begins this second part of the study by outlining the methods for the
participant recruitment, the interviews, and the coding exercises conducted through
the subsequent phases.

To answer the second research question, I observed adult novices using existing

resources (phase 1). Chapter 4 presents the themes and findings from phase 1.

In Chapter 5 the resulting themes were used to inform a new design of an online
resource (phase 2). This chapter features the process of ideation and the rationale for
the final design.

To answer the third research question, a second set of participants was recruited to go
through the same coding activity as the initial participants but were instead asked to
use the new material (phase 3). Chapter 6 explores the findings from the interviews
and coding activities that were conducted in phase 3.

Lastly, Chapter 7 concludes the study by delving into the potential for future
research, the limitations of this thesis design, and the implications for the findings

from this study.

Literature Review

This study spans the fields of online learning, self-teaching, and computer science
education. Each of these subjects is a component of this study, culminating in a series
of interface design recommendations. The intersection of the andragogical fields and

interface design of educational materials is the foundation for this work.

Challenges in Learning Computer Science

An interesting study completed by researcher, Philip Guo focused on the population
of adult learners who are largely outside of the workforce. He studied the
motivations, behaviors, and frustrations of 504 survey-respondents with an average
age of 65 years. Guo found that the motivations of the respondents were split into
three categories: age related pressure, personal enrichment, and job-related growth
(Guo, 2017). Guo suggested that the motivations of the respondents may or may not
differ with new coders of differing age groups. Additionally, Guo did not make any
conclusions about the participants’ motivations being related to their self-teaching
methods.

Another relevant aspect of Guo’s study is the survey of learner frustrations. The top 5
non-age related frustrations with learning were bad pedagogy, syntax errors, software
installation and configuration problems, programming language-specific features, and
run-time errors (Guo, 2017). Guo postulated that these frustrations may be

consistently troublesome for a wider age population as well.

Who is Learning Computer Science?

Adults learning computer science is an area of study that is of particular interest as
working professionals pivot into technical careers. The Bureau of Labor statistics
found that “[e]mployment of computer and information technology occupations is
projected to grow 12 percent from 2018 to 2028 which will result in more
individuals who are currently in the workforce, learning coding and computer science
skills (Bureau of Labor Statistics, 2019). For a significant portion of adults learning
computer science, they primarily rely on online platforms. In a post by Quincy
Larson, the founder of freeCodeCamp.org, he presented the findings of a survey the
company conducted targeted at new coders (Larson, 2017). Of the 31,000 respondents
surveyed, 36.8% of the new coders had received a bachelor’s degree. From this same
survey, they found that the top three online resources used by these new coders are
FreeCodeCamp, Stack Overflow, and Code Academy (Larson, 2017). The
distribution of resources used by new coders may differ when data is collected by a
source that is not also a coding resource, and by having participants generate the list

of resources, instead of selecting from a list.

Effectiveness of Online Learning

Impactful work is being done to assure the effectiveness in online learning across all

disciplines. A study by Antonis, Daradoumis, Papadakis, and Simos (Antonis et al.,

2011) evaluated the design of online computer science courses for adults. Their study
focused on andragogical design of the materials and assessed the instructional design
by learner performance, learner support, learner satisfaction. The evaluation in the
study was based on a framework developed by Benigno and Trentin (2008) that
bridged together the “learning process and the participant performance” (p. 259). The
framework covered “five dimensions: participative, social, interactive,cognitive and
metacognitive” with each dimension connected to an analytical model (Benigno &
Trentin, 2008, p. 261). This framework was used by Antonis et al. (2011) to design

their methods of evaluating student behaviors and performance in online courses.

When evaluating student struggles during the first half of their courses, Antonis et al.
(2011) found that learners mostly dealt with, “technical problems with the
distance-learning environment (missing passwords, losing connection), lack of
administrative support, and the high scientific level of the courses” (p. 377). By the
end of the course, learners described their main difficulties as a “lack of time” to
work on the material of the course (Antonis et al., 2011, p. 377). In terms of learner
performance, they measured through self-assessments. By the midterm of the courses,
“53% of the learners judged that their performance was satisfactory” and by the end
of the courses, “75% were positive about their overall performance during the
courses” (Antonis et al., 2011, p. 377). However, of the initial number of students

who enrolled in these courses, 48.16% of them dropped out of the courses over the

semester (Antonis et al., 2011). So the participants who would have potentially

self-assessed their performance as poor did not participate in the last survey.

Using Just-In-Time Resources

These methods and findings are very telling of the student experience with linear
online learning. However, many novice coders will turn to just-in-time learning
materials while self-teaching coding. A post from Ron Darby (2018) at Edge
Learning Media defined just-in-time learning as, “a behavioural trait that has evolved
through advances in technology and the Internet. Above all, it is a predisposition
toward accessing the required knowledge when we need it” (para. 3). The behaviors
and measurements of just-in-time learning materials may differ from those evaluating

linear online learning experiences.

There have been numerous studies on how novice and expert coders use popular
online just-in-time computer science resources. A study published in the Journal of
Systems and Software by Chatterjee, Kong, and Pollock (2020) specifically surveyed
novice software engineers about how they use the popular computer science forum,
Stack Overflow. An important insight related to this study was that “novice
programmers focus on 15-21% text and 27% code in a Stack Overflow post”
(Chatterjee et al., 2020, p. 1). These researchers also narrowed down a pool of 400
Stack Overflow posts and annotated each component based on a framework they
designed. The researchers then compared the components of the posts that novice

software engineers interacted with and the prevalence of those components in the

10

pool of posts. This study provided helpful context for a standard way to label the
anatomy of a Stack Overflow page. Chatterjee et al.’s (2020) study was exploratory,
providing a cursory window into the behaviors of novice computer science students

using online resources.

Balancing Numerous Resources

The focus Chatterjee et al.’s study is specifically on resources used by individuals
who are self-teaching. In the field of computer science there are vast numbers of
resources available online. A study in interface design from Glassman and Russell at
Google (Glassman & Russell, 2016) explored a design that helps synthesize the
process of self-teaching from multiple sources. These researchers built a tool called
DocMatrix which allowed users to view multiple documents “simultaneously in
parallel” through a grid structure. A key limitation of the tool in its state at the time of
the publication was that it only worked with “structured documents” that were
accessible through Google Books API. They assessed their tool for the quality of the
users’ reading and ability to synthesize, as well as the amount they were able to read.
The key finding from their work was that “[s]ubjects believed that with DocMatrix,
they could more easily assess the usefulness of a book and synthesize information
across multiple sources.” (Glassman & Russell, 2016). This work explored the
challenges of self-teaching from numerous online resources. The conclusions made
about the tools interface advantages are not directly applicable to the challenges faced
by self-teachers studying computer science. The interactivity of the online resources

used by computer science students is not specifically accounted for.

11

Some areas of further study in the intersection of just-in-time learning resources and
self-teaching computer science include further participant survey and interview,
design solutions for the themes of frustration discovered, and personalization for

self-teachers with different motivations for learning computer science.

12

Chapter 2: Content Comparison of Computer Science
Curriculum and Online Resources

In order to understand the content differences between just-in-time coding solutions
and formal computer science curricula, I completed a content comparison analysis
between these types of educational materials. The purpose of comparing the online
resources and computer science curricula was to determine how disparate these two
methods are in their substance and content. In regards to my final research question,
this comparison sets a baseline for how much of our analysis of design success could

be affected by incongruent content between the two types of resources.
Methods

Collecting Materials

By sending emails through the Association for Computing Machinery's Special
Interest Group on Computer Science Education (SIGCSE) list-serv and directly to
university computer science professors, I was able to compile teaching resources from
10 professors that they use when teaching introductory computer science. In order to
narrow the scope of the project, I chose to focus on one introductory topic, teaching
functions. A total of ten professors provided materials on this topic. The materials
included slide decks, videos, online classes, and more. I completed an in-depth review
of all of the materials and catalogued the sub-topics covered in the materials. I read
through or watched each material. I recorded each time a unique topic appeared in the
materials. With an aggregated list of topics, I revisited each material and recorded if

the topic was explicitly covered. If a topic was reiterated in the same material, the

13

repetition was not recorded. In order for a topic to be explicitly covered, it had to be a
part of the objectives of the material, involved in the activities prompted by the
material, or the focused subject of a slide or section of the material. This eliminated
topics that were only mentioned, since they were not deeply explored or were based

on previous knowledge of the audience.

Selecting Resource for Comparison

From the existing studies on this population, I was aware that Stack Overflow is one
of the most popular resources used by novice coders. This resource is also an
interesting subject for the study because the content is not professionally curated. The
site is a forum that has a voting system to promote preferred answers to coding
questions.

In order to select a specific page from Stack Overflow, I searched "Python functions
Stack Overflow" in the Google search engine. The first result is a question from the
Stack Overflow forum that is titled “Basic explanation of python functions”. The

question was asked on September 5th, 2015 and was answered by 3 unique users.

Findings
Research Question: What are the content differences between just-in-time coding

resources and traditional computer science curriculum?

The materials sourced from the professors were distilled to a list of their key topics.

The topics and their descriptions can be found in Table 1. I recorded how many times

14

each discrete topic appeared in the aggregated 10 materials from professors and that

total can be found in the third column of Table 1.

Table 1: Material Topics

Topic

Function Calls

Parameter
Passing

What are
functions?

Function
Syntax

Why divide
code?

Scope

Examples of
Familiar
Functions

Multiple
Parameters

Abstraction

Returns

Program
Modularity
Benefit

Description

Materials explain what it means to call a function.
Materials demonstrate the syntax of a function call.

Materials explain what parameters are. Materials
demonstrate how parameters define what values can be
passed into a function.

Materials explain what functions are and how they work.

Materials demonstrate function syntax.

Material prompted students to consider why it may be
useful to divide code.

Materials describe the concept of scope as it relates to
functions.

Materials noted that students had already worked with
some familiar, built-in functions such as print() and

input().
Material demonstrated a function that has multiple
parameters.

Materials explained how functions can be used to
introduce layers of abstraction in a program.

Materials demonstrated functions that had return
statements.

Materials described the benefits of having modular
programs. Modular programs are ones that separate
discrete tasks into independent modules so that they can
be used individually and best strategically tested or
patched.

Count

15

Materials demonstrated a code trace/stack trace. They
went line by line of a program and noted how the
Code Trace variables changed. 2

Functions
Calling Other | Materials demonstrated a function calling another
Functions function. 1

Materials referenced or provided the language
Documentation documentation for functions. 1

I used the topics that were aggregated from the formal computer science education
materials and determined how often each one was mentioned in the entire thread of
the Stack Overflow question.

The comparison between the computer science materials that were sourced from

professors and the answers of the Stack Overflow forum are presented in Table 2.

Table 2: Content Comparison Topics Matrix

CS Total Stack
Materials Answer1 Answer2 Answer3 Overflow
Topic Count Count Count Count Count
Function Calls |8 2 2 1 5
Parameter
Passing 8 1 3 1 4
What are
functions? 7 1 1
Function
Syntax 7 2 1 3
Why divide
code? 6 0
Scope 4 0

16

Examples of
Familiar
Functions

Multiple
Parameters

Abstraction
Returns

Program
Modularity
Benefit

Code Trace

Functions
Calling Other
Functions

1

Documentation |1

The topics of Function Calls, Passing Parameters, and Function Syntax were the most

covered topics in the Stack Overflow forum. These topics were in the top five topics

covered by the computer science materials. The most foundational aspects of teaching

a function were covered by both materials. However, the computer science resources

from professors more consistently covered the motivation for why a coder would

want to use functions. This is evident through their inclusion of the topics “Why

divide code?” and “Program Modularity Benefit”. Another disparity between the two

types of materials is the lack of context provided in the Stack Overflow material
versus the formal materials. There was no mention of scope in regards to functions
and no explanation of abstraction in terms of functions. This missing expository
information could make it difficult for a novice coder who is trying to recreate or

adjust the code provided in the resource’s code samples.

17

It is important to note that this comparison does not consider the breadth or depth of
the materials. This method only measures the presence of the topic. No claims can be
made about the difference in effectiveness toward student learning of either computer

science materials or the Stack Overflow forum.

The differences between the existing curriculum of introductory computer science
courses and this singular Stack Overflow resource must be accounted for in the
subsequent experiments. The subject areas that are absent in this Stack Overflow

resource can impact the experience of the second round of the later code activity.

Summary

The aggregation of educational materials from professors on the topic of functions
provided vital insight into the curricula used in a variety of university settings. As the
materials were categorized into their subtopics, the differences across the materials
were also made apparent. Since the presence of each topic was counted across the
materials, the output was a list of the topics in order of priority by the individuals who
contributed materials. Topics that were included in the majority of the materials are a
higher priority to most of the contributing faculty.

The interest lies in how these materials compare to the topic distribution of the Stack
Overflow resource. This content comparison did not measure the breadth or depth of
the content in either the Stack Overflow page or the materials from professors.

However, it exposed the differences in the topics present between materials from

18

professors and the Stack Overflow page. Some key differences were that the materials
from professors more commonly covered the motivations of why someone would use
a function and the context for how functions fit within the greater scope of computer
science.

These differences only reflect one page of Stack Overflow, but is representative of the

information that is most discoverable by novices since it was the first result.

19

Chapter 3: Methods for Resource Observation and Evaluation of
Design

In order to gain insight into how adult novice computer science learners who are
self-teaching use the existing resources and the intentions behind their choices, |
conducted a series of user tests. My goal was to observe what the users interacted
with and what parts of the resources they leveraged when self-teaching. The goal of
this approach was to inform my designs by observing the way individuals interacted
with the existing materials. It was also important to gauge if and how learner behavior

differs based on their goals for learning computer science.

Participant Recruitment

The qualifications for participants were that they must be 18 or older and that they
considered themselves a novice coder or computer science learner who is
self-teaching. I defined someone self-teaching as a person who is not currently
enrolled in any formal face-to-face or online computer science classes. Individuals
who were participating in self-paced online learning through tutorials or step-by-step
guides were considered as valid participants for this experiment. I determined formal
online classes to be anything that is offered by a university or higher education
institution, or any online or face-to-face learning that would result in a degree or
certification. I did exclude participants based on how long they had been
self-teaching, so participants ranged from self-teaching for a few months to many

years. However, if participants had taken a formal coding class in the last year, they

20

were not included in the experiment. However, these qualifications still resulted in a
variety of participant skill levels. Some learners had never taken any coding classes,

some had taken courses many years ago, and some used coding regularly in their job.

The participants were recruited through personal and professional connections. I
contacted potential participants via email and corresponded to schedule a time to
engage in the experiment. The full text of the recruitment email can be found in
Appendix A. All participants for the first set of interviews engaged remotely. They
emailed the study consent form and the demographic survey before attending the
online video call. The consent form can be found in Appendix B and the demographic
survey in Appendix C. The experiments took place over a Google Hangouts video
call. The participants were given the opportunity to read the paperwork on their own
and ask any questions. After the consent process was completed the study began.
Participants were filmed and/or screen-recorded. I used Open Broadcast Software to
record the screen of the Google Hangouts video call, as well as the audio from both
the device (incoming call) and the microphone. The recordings include video of the
participants for those who opted to have their cameras on during the video call. The
recordings were used to create research notes after the session. It was important to
have the screens recorded so that I could deduce what areas of the screen the
participants were interacting with when they made certain comments. Individuals
who participated in person attended the session at an office on the University of

Maryland College Park campus. They completed the survey and consent form and

21

then performed the coding activity at a provided computer. The audio of the session
was recorded by an external microphone and the screen activity was recorded by
Open Broadcast software. I used the recordings of the sessions to take notes after the

fact to code into themes.

Participant Profiles

There were two iterations of the observations, each with 6 participants. This number
of participants was sufficient in informing my understanding of current practices from
students. The participants varied in their backgrounds and goals, and patterns were
able to emerge from this sample size. Secondly, the 6 participants for phase 3 were
sufficiently able to provide insight into how the re-designed resource would be used.
For the scope of the implications of this study, I deemed 12 total participants to be
adequate. Table 3 demonstrates their age, gender, education level, and self-teaching

methods.

Table 3: Participant Information

Phase | Participant | Age | Gender | Education Level Self-Teach
Methods
1 1 25 Female | Current PhD Forums, online
Student guides, Googling
specific questions
1 2 29 | Female [Bachelor’s Degree | Online classes,

textbook, forums,
online guides,
tutorial videos,
Googling specific
questions, free

22

classes from
universities

23

Female

Bachelor’s Degree

Forums, online
guides, tutorial
videos, Googling
specific questions

23

Female

Current PhD
Student

Online classes,
online guides, free
classes from
universities

29

Male

Master’s Degree

Forums, online
guides, Googling
specific questions

25

Male

Bachelor’s Degree

Online classes,
textbook, forums,
online guides,
tutorial videos,
Googling specific
questions

34

Male

Bachelor’s Degree

Online classes,
online guides,
tutorial videos,
Googling specific
questions

23

Male

Current Master’s
Student

Forums, online
guides, tutorial
videos, Googling
specific questions

23

Female

Current Master’s
Student

Textbook, forums,
online guides,
Googling specific
questions

10

24

Male

Bachelor’s Degree

Forums, tutorial
videos, Googling
specific questions

11

20

Female

Current Bachelor’s
Student

Online classes,
textbook, forums,

23

tutorial videos,
Googling specific
questions

3 12 31 Female

Current Master’s
Student

Forums, tutorial
videos, online
guides, Googling
specific questions

The participants were asked to complete a survey (Appendix C) prior to the

experiment. The questions yielded the demographic information, educational

experiences, and interest level in the computer science field. These questions

included:

e What have you used to teach yourself computer science?

e What are your motivations for learning computer science?

e How do you plan to use your computer science knowledge?

These questions gave the context to help tailor the semi-structured interview

questions used for the experiment.

Semi-Structured Pre-Interview

I began the sessions by conducting a semi-structured interview with each participant

about their prior education, learning habits, methods of self-teaching, goals for their

education in computer science, and any plans for formal education in computer

science. See the full collection of questions in Appendix D. Some of the questions

included:

e How have you approached learning computer science?

e What resources do you use?

24

e What are your goals for your computer science education?
e What is the most frustrating part about teaching yourself?

e What is the most rewarding part of learning computer science?

Experiment Design

After the pre-activity interview, I presented the individual with a coding challenge.
For phase 1, participants were allowed to use any just-in-time learning resources to
complete the activity. The participants were in full control of what resources they
would use and when. For phase 3, the participants were only given the resource I

created during the design phase of this study to use.

For the experimental part of the data collection, participants were asked to attempt a
coding challenge while using the think-aloud procedure. Given the language options
of Java, Python, and JavaScript, they were asked to choose the language that they had
most recently been studying. The coding challenge focused on the computer science
concept of functions. This was chosen because functions are an introductory concept
that does not differ greatly between the three chosen languages.

The coding challenges asked participants to adjust an existing program so that it used
a function to execute a series of print statements. The subsequent prompts added
levels of complexity such as requiring values passed through parameters and values
returned with return statements. By completing the coding exercise the participants

will have written 4-5 functions.

25

For Prompt 0, participants were given a program that printed the lyrics to Happy

Birthday. They were asked to answer the following questions:

e What does this program do?

e What do you think about this program’s design?

e How would you change or improve this program? Why?

e Have you written programs like this one before?

In Prompt 1, they were asked to adjust the program so that the lyrics were printed in a

function. Prompt 2 provided new code that got user input for a name to be the subject

of the Happy Birthday song. The participants were asked to adjust the program so the

input was gathered in its own function. Prompt 3 asks the participants to rewrite the

program so that it uses functions to get the input and print the song lyrics. The

suggested function names are “getBirthdayName” and “printLyrics”. Lastly, Prompt

4 asks participants to explain a code trace of their final program. See the full coding

activity in Appendix E. Table 4 provides the specific intentions of the prompts used

for the activity.

Table 4: Code Activity Prompt Intentions

Prompt

Intentions

Prompt 0

This prompt serves the purpose of gauging how much the
participant is able to read the code provided and deduce what the
program will execute. It also lets the researcher know how
comfortable the participant will be with changing and
manipulating the existing code.

Prompt 1

Participants must define a new function and have the function
execute the print statements. This task requires knowledge of the
syntax for function definition, naming the function, and calling

26

the function to execute the code.

Prompt 2 Participants must define a second new function and have the
function receive input from the user. There are numerous
methods to fulfil this prompt and it is up to the participants
discretion which method they choose. The most straightforward
execution of this prompt would include passing values by
reference through parameters. Other solutions involve scope or
creating global variables, or defining functions within other
functions.

Prompt 3 Participants must define two discrete functions, one that gets the
user’s input and one that prints the lyrics with the user’s name.
There are numerous methods to fulfil this prompt and it is up to
the participant’s discretion which method they choose. The most
straightforward execution of this prompt would include having a
return statement in the user input function that returns the string
that the user typed as input. This value would then be passed to
the lyric-printing function through a parameter. Other solutions
involve scope or creating global variables, or defining functions
within other functions.

Prompt 4 This prompt serves the purpose of gauging whether participants
are able to communicate how the final program works. This task
will reveal how much of the code works because they
deliberately designed it to execute in this way, versus working
out of mimicking code from resources. It also reveals whether the
participants can accurately describe how information passes
through the program.

The exercise is adapted from Dr. Katherine Gibson, a professor at University
of Maryland, Baltimore County. (Gibson, 2019)The question demonstrates the coders
ability to write a function. The exercise is scaffolded to gradually introduce more
levels of complexity.

In order to complete this coding activity, the participant would need to engage
with, at minimum, the following topics:

e Function Calls

27

Parameter Passing
Function Syntax
Returns

Code Trace

Since there are numerous ways to successfully complete the challenge,

participants could also wish to find information on why we use functions, what scope

is, and even language specific documentation.

Semi-Structured Post-Activity Interview

After the participant either successfully completed the coding activity or opted to end

the activity, they engaged in a post-activity interview. These questions asked them to

reflect on their frustrations and to describe their experience. See the full collection of

questions in Appendix D. The questions included:

What did you find most challenging about this exercise?

When did you feel the urge to reach for help?

Can you describe the experience of using the support technology/websites?
What could have made this process easier for you?

What’re you looking for when you Google something? What makes the

resource useful or not useful?

Upon completing the experiment, participants received a $15 gift card for their

participation in the study.

28

Data Theming
The following section outlines my methods for data theming for the interviews and

coding activity of this study.

Interviews

All of the interviews were recorded and all of the interviews followed the same basic
structure of questions. In order to theme the interviews, I listened to the recordings
and took summarized notes on the participants’ answers. | organized the notes by
grouping them by question. I was then able to see how the participants more generally
responded to each question. I reviewed the notes to extract themes and determine the
prevalence of ideas from the interviews. The themes from the interviews are outlined

in the findings.

Coding Activity

I watched the recordings of the experiments and cataloged each action taken by the
participant. These actions included what was done they did on the screen through the
mouse and keyboard, but also what they said. Through this method, I paired the
context to the participants' actions.

Participants completed the final prompt of the exercise, which was a verbal or drawn
stack trace. Because of the disparate levels of coding mastery, the information was
useful for comparison or measuring the effectiveness of their experience with the
resources. For these reasons, the information collected from those stack traces are not

featured in the findings of this study.

29

From the cataloged actions, I reviewed each note and assigned a theme. The themes
were generated during the process of reviewing the notes. When a note did not fit into
an existing theme, one was created or broadened to accommodate. From the
large-scale themes, I was able to breakout subcategories to have more granularity in

the findings.

30

Chapter 4: Novices Using Existing Resources (Phase 1)

Research Question: How do existing just-in-time learning solutions support

self-teaching, adult computer science learners who are new to coding?

Findings from Pre-Activity Interview

The pre-activity interview set the basis for how active the participants are in their
self-teaching, what sort of resources they use, and what challenges they face. The

findings are based on the interviews with the 6 participants from phase 1.

Approaches and Goals

The approaches taken by the participants to learning computer science were
connected to their computer science education goals. The participants who took a
proactive approach to self-teaching tended to have the goal of learning the concepts
for the sake of building that skill, unconnected from a specific project. While the
participants who took a more reactive method of self-teaching tended to have the goal
of executing a specific project for work or school. Two participants from the phase 1
interviews described their goals for learning coding as wishing to gain a holistic or
broad understanding of the foundational computer science topics. These two
participants also noted that they prefer to self-teach using tutorials or linear coding
demonstrations. This was in contrast to the four participants from phase 1 who are
self-teaching code in order to serve a purpose for work or school. These participants
consistently noted their preferences for just-in-time resources such as forums, and for

code samples.

31

I categorized proactive self-teaching practices as seeking out guided tutorials,
investigating the fundamentals of computer science, and building a broad conceptual
understanding. This method also avoids opting out of certain subjects because they
temporarily seem irrelevant. I am categorizing reactive self-teaching practices as
seeking out answers to emergent coding questions, finding code examples for syntax
or that directly apply to their situation, and self-limiting exposure to topics that seem

irrelevant.

Many participants were explicit about the connection between their practices and
their computer science education goals. One participant noted, "Unless I have a
project, I don't usually try to learn [coding]. I need to be able to apply it right away."
In this example, the participant is not regularly working on their coding abilities and
is only motivated to engage or practice when they have a project to apply it to.
Similarly a participant stated, "I kind of wish there was self-motivation to actually do
an hour a day of a Python tutorial to keep my brain thinking about computer science.
1 only Google coding questions if ['m actively using it elsewhere in my life." At the
root of needing these skills for application is the need to actually solve a problem.
One participant discussed the struggle they feel with spending valuable time on
reviewing the basics when there is an urgent and relevant problem to solve. They
stated, “But it's hard to motivate myself to take that time [to read the basics of
coding]. Especially when I have a specific problem I'm trying to figure out.” In this

case, the participant is actively not relating learning the basics with their ability to

32

solve their specific problem. On the other hand, a participant that engaged in more

proactive self-teaching practices stated, "I would like to become proficient enough

where I stop just Googling things. I would like to know intrinsically how to do it."

This end-goal has led the participant to take a more structured and proactive approach

to learning computer science for the time being.

It is worth noting that there is no inherent benefit from taking a proactive or reactive

approach. The approaches are both values methods of reaching different goals.

Self-Teaching Resources

The participants gave numerous examples of resources they used for self-teaching

computer science. From the numerous examples of resources described in the

interview, I grouped the resources into four categories: forums, tutorials, textbooks,

and one-on-one help. Table 5 provides an in-depth description for each type of

resource, as well as numerous examples from the interview of each category.

Table 5: Types of Self-Teaching Resources

some are community moderated. Most
examples have a voting system in place to
rank the answers.

Category Description Examples

Forums This category includes websites that have a | Stack Overflow,
question/answer format. Some examples are | Quora, Yahoo
moderated by employees of the platform and | Answers,

eLearning Heroes

Tutorials This category includes websites that have Code Academy,
structured, scaffolded instruction on Code.org, Khan
computer science topics. Some of these Academy,
examples include self-quizzing, code W3Schools
examples, videos, and activities.

Textbooks This category includes physical textbooks Learning Python

33

and eBooks that have instruction on the the Hard Way,
topics of computer science. These resources | JavaScript: The
are mostly static and do not provide Definitive Guide
feedback for the reader.

One-on-one This category includes any help given to a Classmate,

Help participant from an individual through a teaching assistant,
medium other than a forum. This professor,
communication happens in-person, via colleague, friend
email, or other digital media.

A final component that is present through each of the resources listed in Table 5 is
code samples. This category includes any examples of working code provided online
or through files. Code samples are found in each of the methods listed previously, but
they can be considered their own learning resource. For many coders, as they gain
experience, they are able to learn from and dissect code samples without needing the
further context provided by the other resources noted. However, for novice coders,
working code samples without context or explanation can be less useful or
productive. One participant noted that their early days of learning to code included, "a
lot of getting code from someone else and running it and then changing it for myself

and my purpose. [wasn’t really sure how it worked though and I usually get stuck."

Frustrations and Rewards

The participants expressed a wide variety of frustrations with self-teaching.
Conversely, there was a much more unified message about what was rewarding about
self-teaching computer science. The frustrations can be categorized as issues with
knowledge gaps, difficulties with resources, and problems from external forces.

Knowledge gaps refer to any portion of computer science or coding that the

34

participant is not familiar with or does not understand. While difficulties with
resources, refers to barriers they encounter with the educational resources they rely
on. And external forces describe any frustrations that are triggered from outside of the
direct educational experience and they can usually involve other people. Each

category is broken into specific frustrations expressed by participants in Table 6.

Table 6: Categories of Frustrations

Category Frustrations from Participants

Frustrated by not knowing where to start

Knowledge Gaps
Frustrated by not knowing best practices
Frustrated by not knowing what terms to use in a web
search
Frustrated by not knowing what resources to trust
Resources

Frustrated when working with software that is
under-supported

Frustrated when writing code in a language that has bad
documentation

Frustrated by setting up coding environment

Frustrated when they have a great idea but are not given
External Forces | enough time to build it

Frustrated knowing there are other people who could do
this more quickly

Some of these frustrations were reiterated by the participants when they completed
the coding exercise as well. These frustrations are used as inspiration for the design

changes described later in the study.

35

The rewards for participants could all be described as the moment of satisfaction or
“eureka” that comes from finally solving a problem and getting something to work.
One participant said, the most rewarding part is “when it works, when it does the
thing it was supposed to do.” However, the reward differed for participants depending
on their goals. Participants who were learning coding for the sake of understanding,
felt rewarded when they finally understood an underlying concept. They were less
gratified by writing code that worked if they could not understand how it worked. A
participant in this category even noted that they felt rewarded when they knew their
code was “elegant and most efficiently written”. Worrying about the elegance or
efficiency of the code is in contrast to the participants who were learning coding as a
reaction to a work or school problem. They noted their relief and reward when they
finally got the code to execute the outcome they were planning to reach. Some
participants in this category even noted that they specifically did not care how it
worked, but just that the outcome was correct and consistent. A participant clarifies,

“I don’t care how it works as long as it worked.”

Summary of Pre-Activity Interview Findings

The interviews yielded great insight into the experience of self-teaching computer
science using online resources. The relationship between the participants’ goals and
their approaches helped determine what sub-populations of novice, self-teaching
coders exist. The designs that serve the proactive self-teacher may differ from the
reactive self-teacher in the realm of computer science resources. Of those resources,

the interviews helped solidify the categories of resources that are most commonly

36

used by this population. The interviews also allowed me to contextualize the
just-in-time resources into the greater categories of resources. Additionally, the
frustrations and rewards shed light on what the participants identified as their
struggles. Some of their frustration or barriers will become clear in the coding activity
that they may not note themselves. Finally, the aspects of the self-teaching process

that are rewarding could potentially be leveraged in the design of such resources.

Findings from Coding Activity

Nearly 600 actions were catalogued as a part of these six experiments and put into

themes. The four main themes emerged from these notes are presented in Table 7.

Table 7: Themes from Phase 1

Theme Description Count
Searching for Typing a search into a search engine, 96
resources evaluating the results, and selecting a

resource to open.

Browsing selected | Reading, evaluating, or interacting with the 94
resources content of a resource.

Adjusting code Writing code, deleting code, copying/pasting | 91

assignment code, or running a program.
Working with Reacting to logic and run-time errors 17
errors

Searching for Resources

Across the six iterations of the code activity, participants made forty-two unique
searches. Not every search that was made led to a participant opening a resource, and

some searches were made where participants opened numerous resources. The full list

37

of searched phrases from phase 1 participants can be found in Appendix F. The
following words were searched 3 or more times by participants in the experiment.

The most searched words from the experiment can be found in Table 8.

Table 8: Most Searched Words

Word Count
java 19
function 13
code 9
javascript 8
alert 6
class 5
html 4
how 4
define 4
print 4
python 3
variable 3
string 3
return 3
type 3
run 3

The shortest searches were “java program” and “script tags”, which are each two
words long. The longest searches were “code snippet for javascript function that
prints a string”” which is nine words long and “does function have to have return type
java” which is eight words long.

Much of the searching and selecting process is out of the scope of the design
possibilities for this study. This information is helpful for gleaning the level of
understanding the participants had of the content as they worked on the coding

assignment.

Browsing Selected Resources and Adjusting Code Assignment

The notes in the Browsing Selected Resources and Adjusting Code Assignment
categories were the most relevant to the participants’ experiences with the resources
themselves. Searching for resources happens outside of the resource itself and dealing
with coding errors happens between the compiler and further resource searching.
Browsing Selected Resources and Adjusting Code Assignment are the themes
centered around the participants' experiences using resources to improve their code.
These two main themes have been broken into relevant subcategories that are

described and counted in Table 9.

Table 9: Phase 1 Theme Subcategories

Themes Subcategories Description Count
Browsing Interacting with | Participants writing or running 6
selected Try-it-Yourself | code in an interactive code
resources code windows window in a resource. Examples

include W3Schools and CodePen.

39

Reading code Participants reading code samples | 43

samples provided by the resources.

Reading code Participants reading the comments | 3

comments in the code samples provided by
the resources.

Reading text Participants reading the text 34
content in the resources.

Returning to Participants re-opening the 7

resources resources while working on their
code assignment.

Adjusting Interacting with | Participants interacting with the 9
code the compiler compiler in any way beside
assignment running the program. This
included saving files, stopping
program runs, adjusting compiler
settings, and making new files.

Copying code Participants copying and pasting |9
code. Some participants copied
code from previous drafts of their
code assignment or from the
resources.

Programming the | Participants typing directly into 34

assignment their program. These were only
instances where participants were
not directly duplicating code from
a resource that was open at the
same time.

Talking the Participants talking through the 9

problem aloud logic of their coded assignment
and of their code draft.

Re-typing code | Participants duplicating code from | 5
a resource that is open at the same
time by typing it directly into their
program.

Running code Participants running the program | 13

and executing the code.

40

These themes and subcategories were the most pervasive observations about the
participants from the coding experiment. The majority of the notes describe the
participants reading the code or reading the text of a resource. I observed that many
participants tried to skip reading text and preferred reading the code samples. There
were 43 instances of participants reading code samples and 34 instances of
participants reading the text of the resource. I further investigated this pattern and
found that 30 times, the participant read the code sample first and then turned to the
text as a secondary support. There were only 9 instances of participants reading the
page linearly or reading the content in the order the page dictates. In the resources
used by the participants, the code samples were often embedded in a paragraph. So
while the code samples and paragraph text both seem important to the participants,
the priority is to have the code samples first.

Summary of Coding Activity Findings

The coding exercise exposed the ways that the participants solve problems and use
resources when self-teaching a computer science topic. The initial four themes
provided a framework to use when thinking about their behaviors during the exercise.
The insight into the challenges with searching for a resource was enlightening and
leads to design ideation later in the study. After narrowing down to two main themes,
adjusting code assignment and browsing selected resources, I was able to break out
further subcategories of their interactions with the resources and their code authoring.

This insight will directly correlate to potential design decisions. Lastly, the

41

prioritization of code samples over explanatory text by the participants was an

extremely useful detail for later design.

Findings from Post-Activity Interview

The post-activity interview focused on participants’ experiences with the exercise and
asked them to reflect on their choices when it came to resources. The interviews were

conducted with the 6 participants from phase 1 after completing the coding activity.

Challenges with the Prompts

Many of the participants were not able to complete the prompts, so the level of
challenge differed across the participants. An initial challenge for some was that they
did not understand the prompt. Some participants had never used or created a function
before and did not know what a function was. Understandably, this made the coding

prompt difficult to understand, especially with a researcher watching them.

Additionally, some participants did understand the concept of a function, but could
not reason why a function would be used for such a simple program. It was a
challenge for a few to get past the relative simplicity of the program’s design. This
frustration was quite expected in retrospect, particularly from participants who have
only self-taught computer science with the intentions to solve a business or work
problem. They have only attempted to execute code that fulfils a mission they
thoroughly understand. The exercise was scaffolded so as to gradually require more
facets of functions, which is antithetical to the practices this more reactionary

population typically uses. A participant who only regularly codes to parse DNA

42

sequences for their projects noted, “/ would have just found another - hardcoded way
to do it. It would have had the same result, and it would have had less to do with
programming.” An outcomes focussed mindset made this exercise challenging at its

foundation.

General Challenges

The majority of the other challenges fit into the categories of frustration found in the
pre-activity interview. One participant noted their frustration from a knowledge gap
and described, “I was frustrated because I can’t interpret how to go through a
problem when I don’t have the words and language needed to talk about Python.”
Similarly, a participant wished for “more code syntax off of the top of my head.” An
external factor that challenged many participants was running out of time and feeling
watched. The exercise was not actually timed, but many participants wanted to avoid
wasting the researcher’s time. Additionally, learning a new concept while being
watched caused anxiety for some participants. Some challenges posed by the
resources were not having the examples the participants wanted and were looking for.
A participant “wanted examples where it had complete code using multiple functions”

but was struggling to find an example that fit this criteria.

Reaching Out for Help

Participants were asked to reflect on times they felt the urge to reach out for help
during the exercise. I was able to answer questions that were unrelated to the exercise,
but was careful to not guide their coding or resource choices. The participants’

reflections illuminated that their answers had a lot to do with their background in

43

self-teaching. One participant stated, “/ 've never really had the resources to ask other
people at my job, so I didn’t really have that urge.” While a participant who is
enrolled in secondary education said they would “have gone to a professor or my
friend who codes.” These vastly different answers reveal that the tendency to ask for

help can be related to the options that have been available to you in the past.

Useful Resources vs Unuseful Resources

As each participant had recently interacted with numerous online resources, they were
asked to describe what made a resource either helpful to them or what made it
unhelpful. A common item that classified a resource as very useful was containing
numerous code examples with clear explanations. As one participant explained, “/
can always use more little chunks of code with well annotated explanations or
comments.” Similarly, multiple participants noted the benefit of try-it-yourself code
portals. One participant noted, “I don’t want to mess up my whole program for a
small piece.” In other words, they like to have a space where they can test how a

small piece of code will run before introducing it to their larger program.

The aspects that made a resource unuseful were somewhat surprising. Some noted a
lack of trust of informal or crowd-sourced computer science resources. A participant
said, “I just want to know that the code I'm reading is right. It’s like I want the
teacher to tell me, not another student.” However, in contrast to this concern there
was also discomfort with using these resources if they seemed to only be for “real

coders”. One participant summarized, “If it is a website that seems geared to coders, I

44

might not want to use it because I don’t know what they are talking about.”
Additionally, some participants who are considered more reactionary self-teachers
said they try to avoid anything that is a part of an “online learning experience”. The
participant stated, “/ just want to see and extract the one thing I'm looking for. I’ll
know more quickly if I'm in the right place.” The participant expounded on what
makes an “online learning experience”. They described it as, “something that tries to
take me on a linear path, from start to finish. They usually have videos too.” Such
resources would fall into the category previously listed as tutorials. The post-activity
interviews provide more evidence for a relationship between the type of self-teacher
(proactive or reactive) and their preferences in materials.

Lastly, while the code samples were vital to making a resource useful, one participant
remarked, “a wall of code is intimidating.” Large program samples that do not have
intermittent explanation can have the opposite of the intended effect and actually turn

users away from the resource.

Summary of Post-Activity Interview Findings

While many participants struggled with the exercise itself, I was still able to gain
significant insight into more general challenges and patterns. The general challenges
included knowledge gaps and external forces, with the additional pressures of being
watched during a synchronous study. There was also insight into what type of learner
may be looking for one-on-one help in a coding challenge like this one. Lastly, I was

able to aggregate some key features that make a resource helpful or unhelpful.

45

Chapter 5: Designs for Self-Teaching Resources

From the insights gained through observing the current state of practice for novice
adults who are teaching themselves computer science, I was able to develop potential
designs that could leverage the benefits of the online resources used by this
population. The final design ideas are rooted in the themes from the code activity
experiment. Multiple types of solutions were considered when ideating and sketching
for this population. A final design was created in the form of an interactive mockup to

be evaluated in the second experiment.

Solution Sketches

With the findings from the first phase of this study, I ideated on some large scale
product solutions to the barriers faced by self-teaching, novice computer science
learners. The sketching method is a narrative sketch that shows the user’s journey and

demonstrates the proposed features of the product or solution.

Resource Searching Assistance

This design in Figure 1 is in reaction to the frustrations of not knowing where to start

and not knowing what to search in a search engine.

46

£ v S S

Users struggle to know where to
even begin with a coding
challenge. They do not know
the terminology to search.

An eye-catching, but not
invasive pop-up will prompt a
new user to engage in the
survey.

The survey includes 3 columns in
relation to the user’s problem. The
columns are labeled, Yes, Maybe,
No. The fourth column is labeled
Terms and is full of computer
science concepts.

The terms start out in plain
English. The user drags the
phrases into the relevant
columns based on their relation
to their problem. The Terms
column populates with relevant
coding terms based on the
selections.

The user moves terms they
recognize to the appropriate
columns or they add their own.
When they press Calculate, the
system determines a level of
comprehension of the user and a
suggested description of the

problem the user is working on.

The system will output a problem
statement with hyperlinked relevant
terms. The links will take them to the
definition of the terms. Additionally,
the most relevant pages from the site
will be listed below.

Figure 1. Resource Searching Assistant Storyboard

This solution is an interesting way to tackle the frustrations the participants feel when

searching for useful resources, however it does not particularly assist the population

in the way they use these resources. This solution was determined to be out of the

scope of this project.

Code Anatomy Visualization

This design in Figure 2 is in reaction to the frustrations with not knowing how to

string the code samples together, especially from multiple sources.

47

The users piece code from many
sources together into one solution.
However, a lack of understanding
of how those pieces fit together
leads to broken code.

The code block would get a
color-coded overlay for each
phrase. These colors would
correspond to a 3D
visualization of the code
architecture.

The user can focus on one
component to read its
description and further
details.

The user zooms in on an overlap to
determine the components’
relationship. For example, int a is
instantiated in the given function.

The user can manipulate the
anatomy and see the changes
reflect in the code. For
example, this would bring the
blue variable instantiation
into the red class.

Figure 2. Code Anatomy Visualization Storyboard

This solution is similar to the numerous methods of code visualization that exist and

that are used by teachers and students. It is also a particularly big leap to conclude

that a participant would understand how their code links together better from a

complicated visualization. Lastly, no participants explicitly expressed a desire for a

visualization or tool for seeing the bigger picture.

Code Sample Layout

The design in Figure 3 is in reaction to the observations of how participants interact

with the code resources, specifically with code samples. The usefulness of the code

samples is dependent on their quality and the placement of the context and

48

explanation of that sample.

Users are reading the featured
code blocks first and return to
read the paragraphs only after
many failed attempts with their
own code.

The code block is featured first.
Each phrase of code is connected
to documentation definitions.
When the user hovers over a
phrase, they see the definition.

Key terms in the
definition are
hyperlinked for more
detail. This will help
users inform their
future search
vocabulary.

Or

imy =0 £ T

Users can view the code in a split
view with the output. The users
can change values and see how
the output is affected.

Font, coloring, styling will all
mirror popular coding editors and
be consistent across the code
blocks.

Figure 3. Code Sample Layout Storyboard

This design addresses the main barrier that was observed in the previous experiment

and is the most rooted in the observations. This design can be executed through an

interactive mock-up and most closely addresses the key research questions of this

study. For these reasons, the Code Sample Layout design is expanded on for further

evaluation.

Design Ideas from Themes

Research Question: What are some instructional and interface design changes for

just-in-time learning solutions that could improve the learner experience?

After ideating on the possible big-picture solutions, I decided that working on the
code sample design would be the most beneficial to answering my research question.
I believe that the code sample solution is most directly supported by the observations
gained in the first phase of the experiment. With the general plan being to design or
mock-up a just-in-time learning resource, I took each theme from my study and
translated it to a design possibility. Table 10 summarizes the previously identified
themes and subcategories and aligns them with correlating design ideas. Some
themes were intentionally left blank because they are not directly related to an online
resource, but instead are related to the coding environment, the learner, or their

programming ability.

Table 10: Mapping of Design Ideas to Themes and Subcategories

Themes Subcategories Design

Include Try-it-Yourself code
windows where possible.

Interacting with Have the option to run code
Try-it-Yourself code samples whenever they are
windows introduced.

Provide the output of the code

Browsing o, .
sample, even if it is static.

selected
resources

Provide code sample early on the
page, before large swaths of text
where possible.

Reading code samples Embed important information and

context into the code block, so
users do not have to cross
reference the code samples and

50

the paragraphs.

Provide visual cue that the code
sample works or does not
work.This is particularly
important for forum resources.

Match the syntax coloring of code
editors.

Reading code comments

Include well-commented code
samples.

Reading text

Put text after the code sample.

Extract key information from the
text and embed it into the code
sample.

Returning to resources

Adjusting
code
assignment

Interacting with the
compiler

Copying code

Provide a button to copy a whole
code sample.

Make sure code is displayed as
text and can be highlighted and
copied.

Programs written in languages
with spacing requirements (such
as tabs in Python) should be
spaced correctly when copied and
pasted.

Programming the
assignment

Talking the problem
aloud

Re-typing code

Make the resource responsive so
that it can be put into a
split-screen with a coding
window.

51

Include a prompt or reminder to

Running code .
g run their code often.

Not every design option listed above is enacted in the mock-up created for this study.
The limitations of time and ability made me prioritize certain design options over
others. Luckily, this also lessened the number of variables between the first and

second phase of experiments.

Final Design

The final design is based on a revised version of the top Stack Overflow page related
to functions. Figure 4 shows this page, it can also be accessed here. Figure 5 shows
the page redesigned based on the findings from phase 1. The integrity of the question

and answer format is retained in this design.

52

i

v

Home

PuBLIC

©) Stack Overflow
Tags
Users

Jobs

TEAMS Whars

), Frae 30 Day Trial

stackoverflow

Products

Customers Use cases

BN - -]

Basic explanation of python functions

Asked 4 yesrs, Tmonths age Active 1year 4 months ago Viewed 17k fimes

4~)

| have a basic qusstion below to help try gst my head around functions in python (following the
LPTHW tutorials in prep for uni). Could someone explain the syntax below, and whether | am
cormect with my assumptions?

def print_two_again(argl, arg2):
print "argl: %r, argd: Xe" X (argl, arg2)

print_two_again{"Steve®, "Testing"}

| understand that the print_two_agsin is the name of the function. but what is the purpose of
having the argl . argz in the parenthesis next to it7 Is it to call the "steve” “rasting” info the
print command below? or do thoss strings go directing inta the print command?

python function

share. imprave this question follow edited Sep 515 31 5:31

Yu Hag
106K = 23 * 193 » 24D

asked Sep 515 at 527

NZSteve
22501 e2nid

wihat s the purpese of having the arg1, arg2 in the parenthesis nex fo it?

Inthis case. argl and argz are called arguments. Arguments allow functions to receive inputs it's
expected lo use in order to perform 3 task. The inputs are provided by the callers.

For example, in school math. you may've alieady seen things like z = #(x, y) where a function
named fis defined as #(x, y) = x + y . This is he same concept in a programming language

It also allows you do write more generic, flexible, and reusabie code. For example, you don't have
fo write many different versions of a funclicn to accomplish the same task with slighlly different
results, avoiding situations like add2(x, y) = x + y and add3(x, y, z) = x + y + z, and 50 on.
You can simply do something like:

def sum{values): w values is of typs 'list’
t-a
for value in values:
result += value
return result

And call it like this

total = sum([1, 2, 3, 4, 5, 6, 71} a list of any length with numbers

Or like this:

The Overfiow Blog
Podoast 235 The Great COBOL Crunch

The Overflow #18; How many jobs can be
done at home

Featured on Meta

) Community and Moderator guidefines for
escalafing issues via new response.

O Feedback on Q2 2020 Community
Roadmap

B

Technical site infegration cbservational
experiment five on Stack Overflow

& Trisge needs to be fixed urgently, and
users need to be notified upon.

2 Dark Mode Beta - help us roct out low-

contrast and un-convarted bits

Figure 4. “Basic explanation of python functions” Stack Overflow page.

53

Stack

Overflow

Question
Tags Basic explanation of Python functions
Users def print_two_again{argl, arg2):
print "argl: Zr, argl: %" % (argl, argl)
Jobs print_twe_again{"Steve”, "Testing”)

have a basic question below to help try get my head around functions in python (following the LFTHW
tuterials in prep for uni}. Could someone explain the syntax above, and whether | am correct with my
assumptions?

understand that the print_two_again is the name of the function, but what is the purpose of having the argt,
arg2 in the parenthesis next to it? |s it to call the “steve” "testing” into the print command below? or do those
strings go directing into the print command?

Responses

Top Answer &) 16 votes
Wit is the purpose of having the arg 1, arg2 in the parenthesis next fo it?

in this case, argl and arg2 are called arguments. Arguments allow functions to receive inputs it's
expected to use in order to perform a task. The inputs are provided by the callers.

For example, in school math, you may've already seen things like z = f{z,u) where a function named f
is defined as F(Z, %) = T + ¥ This is the same concept in @ programming language.

It also allows you do write more generic, flexible, and reusable code. For example, you don't have to
write many different versions of a function to accomplish the same task with slightly different results,
avoiding situations like add2(x, y) = x + y and add3(x, y, 2} = x + y + 2 and 5o on. You can simply
do something like:

def sum(values}: W values ks of iype 'list®
result = 8
for value in vwalues:
result += value
return result

uAnd call it like this:
total = sum{[1, 2, 3, 8, 5, 6, 7]) ¥ a List of any length with nuabers

#Or 1like this:
total = sum{[1, Z])

() Copy Code

How many arguments a function needs will depend on what it needs to do and other factors.

Figure 5. “Basic explanation of python functions” page redesigned for the study.

54

Design Feature 1: Easy Navigation to Best Code Sample

In order to maintain the question and answer format of Stack Overflow, I did not
reorder all of the code samples to be at the beginning of the page. Instead, I included
a button that would jump the user to the “best” code sample of the page. I chose the
code sample from the highest voted answer as the “best” code sample. See button in
Figure 6. Additionally, I moved the code of the question to the top of the question

block.

¥ JUMP TO BEST CODE SAMPLE

Figure 6. The “Jump to Best Code Sample” button featured at the top of the Stack

Overflow mock-up.

Design Feature 2: Contextual Information within Code Samples

I embedded the contextual information from the paragraphs of the page into hover
tabs in the code block (Figure 7). The black tabs would appear where a use was
hovering over a line of the code. The hover would highlight which areas of the code it
was referring to. The language of the tabs was lifted directly from the language in the
paragraphs, so that I would not be adding any contextual information that was not
present before. The hovers disappeared when a user moved their mouse off of the

code.

55

def print two again(argl, arg2):

. W oy
Name of the function el N % (acat, arpd)

print_two_again(“Steve”,"Testing")

def print_two_again(argl,_arg2):

i Arguments of the function p1, arg2)

print_two_again(“Steve”,"Testing")

Figure 7. The hover-over tabs of the question code sample. The first tab is labeled
“Name of the function” and the second tab is labeled “Arguments of the

>

function”.

Design Feature 3. Distinguish Working and Not-working Code Samples

In order to distinguish between code that was flawed and functioning code, I used

color. The color of the border around the question (which includes incorrect or

incomplete code) is red while the color of the border around the answer was green.

See Figure 8.

56

Question

Basic explanation of Python functions

def print_two_again(argl, arg2):
print “argl: ¥r, arg2: %r" % (argl, arg2)

print_two_again("Steve","Testing")

| have a basic question below to help try get my head around
functions in python (following the LPTHW tutorials in prep for uni).
Could someone explain the syntax above, and whether | am correct
with my assumptions?

| understand that the print_two_again is the name of the function,
but what is the purpose of having the argl, arg2 in the parenthesis
next to it? Is it to call the "steve” "testing” into the print command
below? or do those strings go directing into the print command?

Figure 8. The question code block and text from the Stack Overflow mock-up.

Design Feature 4: Support for Copying Exemplary Code

In order to copy the best code samples from the resource, I provided a Copy Code
button that would put the entire code block in the clipboard. See Figure 9. The code
was formatted so that it would successfully run when pasted into a compiler. The
code block itself could also be highlighted and copied without adding spacing or

formatting.

Design Feature 5: Syntax Highlighting in Code Samples

The code blocks in the resource were all given a standard coloring system. The code
blocks were given a grey background and box to help them stand out. The coloring of
the code mimicked many code authoring platforms that the users may be familiar

with. For example, program language primitives such as “def”, “print”, or “return”

57

were given a different color. Other features of the program, such as comments or
function arguments, were also colored to help distinguish their behavior within the
program. This can also help novice coders identify the different components of the

code. The resulting program decoration can be seen in Figure 9.

Top Answer & 16 votes

What is the purpose of having the arg1, arg2 in the parenthesis next to it?

In this case, argl and arg2 are called arguments. Arguments allow functions to receive
inputs it's expected to use in order to perform a task. The inputs are provided by the

callers.

For example, in school math, you may've already seen things like z = f(z, y) where a
function named f is defined as f{z, y) = & + y. This is the same conceptin a
programming language.

It also allows you do write more generic, flexible, and reusable code. For example, you
don't have to write many different versions of a function to accomplish the same task
with slightly different results, avoiding situations like add2(x, y) = x + y and add3(x,
y,) = x + y + z and so on. You can simply do something like:

def sum(values): # values is of type 'list’
result = @
for value in values:
result += value
return result

#And call it 1like this:

total = sum([1, 2, 3, 4, 5, 6, 7]) # a list of any length with numbers
#0r like this:

total = sum([1, 2])

[Copy Code

How many arguments a function needs will depend on what it needs to do and other

factors.

Figure 9. The top answer text and code block from the Stack Overflow mock-up.

Some design elements that were retained from Stack Overflow include the question

and answer format and voting for answers. Additionally, I retained that when the

answerer quoted the root question, their quotes were specifically styled. This can be

seen in Figure 9 in the light-blue box.

Summary of Design Changes

The final design to be tested in the third phase of the study is an interactive mock-up

of a Stack Overflow page. The design changes enacted are documented in Table 11

and the corresponding changes are labeled in Figure 10.

Table 11: Design Changes

Themes Subcateg | Label | Design
ories
A “Jump to Best Code Sample” button
Code prioritized over text where possible
Browsing Reading
selected code C Hover-over labels for code blocks
resources samples
D Color-coded questions and answers
E Consistent code block styling
F “Copy to Clipboard” button
Copying Code is displayed as text and can be
Adjusting code highlighted and copied
code
assignment Code space correctly when copied and pasted
Re-typing Resource is responsive
code

59

Stack Overflow

Sta C k b JUMP TO BEST CODE SAMPLE

Overflow

Question

Basic explanation of Python functions

(argl, argl)

Usars CB def print two again(argl, j
mar

lobs
Sl print_two_agalnf"Steve™, g")

| hawe 3 basic guestion below to help try get my head arcund functions in python (following the LPTHW
tutorials in prep for uni). Could someons explain the zyntax sbove, and whether | am correct with my

assumptions?

| understand that the print_two_again is the name of the function, but what is the purpose of having the argl,
arg2 in the parenthesis next to it? is it to call the “steve” "testing” into the print command below? or do those
strings go directing into the print command?

Rezponzss

D)

Top Answer () 16 voz=s

What is the purpose of having the argf, arg2 in the parenthesis next to it?

In this case, argl and arg2 are called arguments. Arguments allow functions to recsive inputs it's
expected to use in order to perform a task. The inputs are provided by the callers.

For example, in school math, you may've already seen things like z = f(z,y) where a function named f
is defined as f{z,¥) = = + . This is the same concept in a programming language.

It also allows you do write more generic, flexible, and reusable code. For example, you don't have to
write mamy different versions of 2 function to accomplish the same task with slightly different resules,
avoiding situations like add2{x. y) = = + yand add3(x, ¥, 2] = x + y + 2 and 50 on. You can simply
do something like:

dee{- sum{values): ¥ values i< of Cype "1EsK’
>

result = @
for value in wvalues:
result += valus

return result

Hand call it like this:
total = sum([1, 2, 3, 4, 5, 6, 7]} # a list of any length with numbers
HOv Llike this:

tetal = sum([1, 2]

F (1 Copy Code

How many arguments s function needs will depend on what it needs o do and other factors.

What confuses me Is the geint tvo odaing "Steve™, "testing”) what is this colled and its purpose?

Figure 10. The final design of the resource with corresponding labels to Table 11.

60

Chapter 6: Evaluation of Resource Design (Phase 3)

The final phase of the study asked a new set of adult programming novices to go
through the same protocol as used in the initial study but now using the redesigned set
of resources. The goal of this phase was to provide data that could be used to
comparatively evaluate the impact of my design. The third phase experiment is also
segmented into the pre-activity interview, the coding activity, and the post-activity

interview.

Findings from Pre-Activity Interview

I conducted a pre-activity interview for each of the six participants in phase 3.
However, the purpose of conducting the interview with this population differs from
the first phase. For phase 3, I used the pre-activity interview to get context for where
the participants were in their coding career. The interviews were then catalogued and
analyzed using the same methods as phase 1. I found that the themes and trends of
these interviews were the same as phase 1. The participants still fell into the
categories of reactive versus proactive self-teaching styles. Additionally, they
expressed the same variety of frustrations with self-teaching computer science. The
listed many of the same resources as the first set of participants, all of which fit into

the categories of forums, tutorials, textbooks, and one-on-one help.

61

Findings from Coding Activity

I watched the recordings of the activity and recorded each action. The notes were
about the actions taken on the screen, as well as the thoughts expressed by the

participants as a part of the think-aloud procedure.

Nearly 600 actions were catalogued as a part of these six experiments and put into

themes. The three themes and their descriptions are outlined in Table 12.

Table 12: Phase 3 Themes

Theme Description

Browsing the resource Reading, evaluating, or interacting with the
content of a resource.

Adjusting code assignment | Writing code, deleting code, copying/pasting
code, or running a program.

Working with errors Reacting to logic and run-time errors

Notably the themes are largely the same as the ones found for the previous phase. The
theme “searching for resources” is eliminated because the participants were provided
the only resource they were allowed to use.

These general themes were broken into subcategories that are described and counted

in Table 13.

Table 13: Phase 3 Theme Subcategories

Theme Subcategories | Description Count
o Working on Writing code or deleting code. 62

Adjusting code

Code

62

assignment Participants copying and pasting 13
. code. Some participants copied code
Copying code . .
pyng from previous drafts of their code
assignment or from the resource.
Running code Participants running the program and | 33
executing the code.
Reading Part1.c1pants readlpg the code .sample 13
. that is embedded in the question of
question code
the forum.
) Participants reading the code samples | 15
Reading answer -
that are embedded in the answers of
code
the forum.
Reading Participants reading the text of the 7
question text question in the forum.
. Reading answer | Participants reading the text of the 31
Browsing :
text answers in the forum.
the resource
Returning to Par'tlclpants‘ re-opemr}g the resource 17
while working on their code
resource :
assignment.
Participants scrolling to find a 24
Specific specific answer in the resource.
searching Some participants used the browser’s
“find” tool.
Interacting with | Participants read the hover notes on 9
hovers the code samples.
) Participants reading and dissecting 21
Interpreting .
. the errors from the compiler after
compiler errors . .
Working running their code.
with errors Participants talking through the logic | 47

Talking the
problem aloud

of their coded assignment and of
their code draft.

63

Reading More Text

There are some key differences between these subcategories and the ones found from
the first phase (shown in Table 9). One key difference was that there were
significantly more instances of participants reading the text of the resource in
comparison to the code blocks. There are two components to my explanation as to
why this changed. The first component has to do with the Returning to resource
subcategory. There were significantly more instances of participants revisiting the
resource while working on their code during this exercise. Since they only had one
resource to consult, they were diving deeper into the content and reading more
carefully then they naturally would. One participant said, “I would probably have
moved onto a different page at this point, but I'll read it a little bit first.” The second
component is the high volume of specific searching. When participants reached a
challenge that would normally garner its own unique Google search, they were forced
to only consult with the page given. This resulted in people slowly and linearly
scrolling through the resource to find content on the extract they were stuck on. Both

of these elements contributed to more instances of participants reading the text.

Running Code

Secondly, there were 20 more instances of participants running their code. I think a
possible reason for this change is that participants were willing to experiment more
with their code when their pool of resources was limited. Similarly, more participants
spent time talking through their code out loud as a means of problem solving, because

they could not consult further resources.

64

Interacting with Hovers

The participants also had helpful interactions with the hover-over tabs that were
added to the code blocks. Unfortunately, only half of the participants discovered the
hover-over tabs. When I asked why a participant did not read the hovers, they stated
“I’'m used to little tabs popping up while I'm browsing things on the internet. It’s
usually image descriptions or labels, which I'm used to ignoring.” A second
participant noting, “I didn’t assume that the information in the hovers was real.” This
critique about the discoverability and reliability of the feature is supported by the lack

of interaction from half of the participants.

Using Question Code

The “Jump to Best Code Sample” button was not utilized by any participants.
Additionally, no participants copied code from the “best” code sample. Code was
only copied from the code block in the question. This is the opposite of the intention
behind the color-coded code blocks. However, since the question code block is
featured first, it makes sense that it was so regularly referenced. Additionally, many
participants remarked that the “best” code sample did not relate to the prompt enough
for them to understand. This is helpful feedback to have from novice programmers
dealing with seemingly dissimilar programs. Four participants remarked that they did
not read the “best” code sample because it dealt with numbers, while the prompts of
the exercise dealt with printing text. However, the entire anatomy of a function (using

parameters and returns) was only present in the “best” code sample.

65

Summary of Coding Activity Findings

In general, the nuances of this particular Stack Overflow page and the limitation of
only using one resource, proved extremely challenging for the participants. The
majority of changes in the participants’ behavior are more readily attributed to the
design of the exercise and the content of the Stack Overflow page. However, for
participants who did discover the hover-over tabs, their patterns in the reading the

code were directly related to the design changes.

Findings from Post-Activity Interview

The six participants of phase 3 engaged in a post-activity interview.

Mismatched Example

A recurring problem for numerous participants was feeling that the code samples did
not match their given prompts. All of the content that needed to go into their
functions was provided in their starter code, they only needed to create the function
around that start code. However, translating the functions in the code samples, to their
prompts was commonly too much of a leap. One participant was annoyed that the
best answer used code that was different from the code in the question and stated, “/
don’t want new code introduced if ['m already trying to figure out the first code.”
Similarly to the issues noted about the “best” code sample, a participant remarked “/
only read the code description if it seems like it does what I'm trying to do.” This

participant reflected on why she did not read the “best” code sample. She stated, “The

66

Happy Birthday program has nothing to do with numbers, so why would I look at

code with lists of numbers?”

Having a Different Plan
Participants that had a little more experience with coding actually approached the

coding prompts with a plan. In one instance, the participant wanted to use global
variables to avoid having to pass values through function parameters. In the second
instance, the participant wanted to define a function within another function to also
avoid parameters. Both participants spent significant time scanning the resource for
any information that would help them execute their plans. Since the resource did not
have any of these details, they both had to reroute their plans to include using
parameters. When I asked about this dilemma they dealt with, they both replied that
they would have used a second resource to continue to execute their original plan.
When reflecting on the challenges of this exercise, the participant said, “honestly, the
most challenging part was that I couldn’t just Google “how do functions operate in

python” because [wanted to go back to the global variable method.”

Looking for Tutorials

Compared to the interviews of phase 1 and the pre-activity interviews of phase 3, the
post-activity interviews for phase 3 yielded more requests for step-by-step tutorials.
One participant stated, “The hover-overs were helpful, but it wasn’t granular enough.
[like the videos where it takes you through the steps.” Specifically, the request for
videos was echoed by other participants from this phase. There are two possible

reasons for this somewhat sudden wish for tutorial-style materials. One is that the

67

limitation of using one resource made them wish they had a stronger foundation. A
participant noted, “/ wish I had just watched a 4-minute video on how functions work
in Python before we started this exercise.” Or the second possible reason is that this

phase of participants included more participants who are new to the basics of coding.

Summary of Post-Activity Interview Findings
The underlying challenge for all participants in this study was that they felt limited by

only being able to reference one resource. This was reiterated in every post-activity
interview and is the underlying cause for the other challenges and behavior changes
listed in the findings. By eliminating the “searching for resources” aspect of their
behaviors, more concentration was put toward their coding and toward reading the
resource in detail. The resource was not specifically tailored to the exercise prompts,
but all information necessary for completing the program was available in the Stack
Overtlow page. However, many participants noted the difficulty and the barrier of

having to translate seemingly unrelated examples to their current code.

68

Chapter 7: Conclusion

The work I completed in this study could be used as a source for numerous new
directions of study. Additionally, there are areas of this study that could have been
improved or clarified. This study can also be used as reference for any future work

that involves the population of adult novices self-teaching computer science.

Discussion

Some ideal next steps for this work would be to apply the designs to more
just-in-time resources and see how it affects the coders’ experiences. It would also be
important to introduce a mechanism for measuring the effectiveness of the material
with and without the design changes. The existing study explores how the
experiences differ but does not measure whether the participants had any sort of
improvement in their abilities to complete the coding activity. Seeing if the designs
have any bearing on the users’ learning could be useful for any designers of

just-in-time learning materials.
There were numerous themes from this study that did not result in further design

decisions. These themes could yield new research and findings about self-teaching

novice coders and online learning resource design.

69

A significant area that I did not explore further was the pattern of behaviors that have
to do with searching for resources. The searching process really impacted the
directions taken by the participants and was a key determinant as to whether
participants were going to become distracted with other obstacles. There is potential
for a project that attempts to remove barriers from the searching process for novice

coders without just curating the content in a site like CodeAcademy or Code.org.

There were also numerous themes from the findings in relation to adjusting code and
browsing the resource that were not addressed in this work. The following themes did
not result in a direct design decision for this study:

e Returning to resources

e [nteracting with the compiler

e Programming the assignment

e Talking the problem aloud
There is potential for intentional design that supports these elements of the novice

coder experience.

Additionally, these findings mostly relate to just-in-time learning materials. However,

there is potential for these findings to be applied and tested on linear tutorials and

coding courses.

70

Limitations

There were numerous limitations associated with this study. While none are so
significant as to undermine the findings, it is important to articulate each limitation so
as to understand the bounds of this work. A challenge of this study was adjusting the
exercise for different coding languages and for different participant skill levels. In
terms of adjusting for different coding languages, there was a particular challenge in
translating the coding exercises between JavaScript versus Java and Python.
JavaScript is generally used to manipulate the content of a web page or HTML file.
Those who had exclusively studied this language were not particularly familiar with
programs that print to the console exclusively. This difference in experience created a
hurdle for those using JavaScript to conceptualize the purpose of the prompts in the
exercise. It also provided a unique challenge for gathering user input. This language
has numerous ways to get user input, and if the version I chose for the code samples
were not what the participants are familiar with, there was an extra challenge for them

in the exercise.

Secondly, I had to be prepared to simplify the coding prompt depending on
participant ability. This adjustment could take the form of allowing the participants to
stop when they were stuck or to open and view the code provided in future prompts
(Appendix E) before successfully completing the code challenges for the first
prompts. I also asked additional probing questions to get more levels of detail in what

the participants did or did not understand about the code they were manipulating.

71

A significant limitation of my study that should be addressed with any future work
was the design of the phase 3 experiments. The behaviors and practices of the
participants in this study were inauthentic in that they only had access to a single
resource. This change was problematic for two reasons. The first reason was that
cutting out the searching step of the process for the participants actually eliminated
some of their self-education and problem solving strategies. The participants used
online searches to inform and improve further topic discovery. By having a singular
resource, they were not able to broaden their understanding of options. The lack of
options was evident from the instances described from the study where participants
were looking for specific solutions. Participants took significant time searching for a
specific, alternative solution in the provided resource, instead of adopting the solution
that was evident from the code provided. The second reason this change was an issue
was that participants altered their natural behaviors. One participant noted, “/ used
this [resource] like they were the only notes I took into a test with me, which is never
the case when I'm trying to code for work”. The observations of participants reading
the resource linearly and revisiting the resource while working on their code many
times in a row are unique to the study design and would not be particularly replicated

if participants had more resource options.

72

If this study were to be replicated, I would advise applying the same interface designs

to multiple Stack Overflow pages that show a wider variety of examples of code.

An important takeaway from this study was that novice coders rely on code samples
being recognizably similar to their own projects. When a variety of resources are
available, participants will not spend time trying to take leaps to relate to programs
that deal with significantly different data. So in any new versions of the experiment, |
would suggest finding Stack Overflow pages that use similar data to the prompted

assignment.

A limitation in the resource design was the discoverability of the hover-over tabs.
There were repeated times where participants would ask a question out loud that
could be answered by the information in the hovers, but the participants did not notice
the pop-up. When this occurred some participants would later find the answer in the
text of the page, others would forge ahead with their questions going unanswered.
The usability of the tabs was successful for those who found them. I think an
improved design would be hyperlinking all of the text in the code blocks with the
mouse icon changing to the clicking hand. By clicking a line of code, a panel to the
right of the code will open and populate with the most thorough definition that can be
aggregated from the content available. This design more closely mimics the designs

in the sketch found in Figure 3.

73

The accessibility of the design choices were not explored in this study. Two aspects
of the design solely relied on color. The visual cue that code was or was not likely to
execute correctly was a red or green colored border. This messaging relies on cultural
understanding of those colors and having acute color recognition. Similarly, the
visual cues to help dissect the components of the code samples also relied on having
acute color recognition or distinction. This aspect of the code sample design was
more subtle and less vital than recognizing if code would execute or not. Overall, the
accessibility of the design changes, and design of just-in-time resources in general

could be analyzed with the sole purpose of improving accessibility.

Implications

One of the most important findings from this study is the relationship between a
novice coder’s motivations for learning and their self-teaching technique. This
finding could inform work for designers of both just-in-time resources and linear
tutorial experiences. Designers could tailor resources to better support proactive
versus reactionary self-teachers. Designers, teachers, and anyone who interacts with
self-teaching adult novices should be aware of this distinction so that they can

provide materials that support the learners’ goals.

Additionally, in this study I was able to aggregate some user opinions about what
makes a useful and unuseful resource. The distinctions between useful and unuseful
could be used by future resource designers as they are creating materials or by

teachers when they are suggesting resources to novices.

74

Supervisors or teachers of adult novice coders should also be aware of the amount of
time and effort spent searching and evaluating self-teaching resources when facing a
coding challenge. In a scenario where a supervisor is asking a novice coder to work
on something that requires a new skill, they should be aware of the added time that
will be used to aggregate useful resources on the topic. This process may affect their
expected timelines and potentially prompt the supervisors to provide more resources

from the outset.

Participants in phase 3 who are more reactive in their self-teaching methods started
expressing interest in having a linear tutorial experience after becoming frustrated
with the lack of quick, just-in-time options. Instructional or interface designers of
linear tutorials may adjust their products to be prepared for scenarios where reactive

self-teachers turn to their resources.

The findings from phase 1 could result in numerous new iterations and designs that
tackle one of the many barriers found in the self-teaching process. Two of the
sketches created in phase 2 were out of scope for this thesis project but could be used

as a future project.

A Final Thought

As the technology field continues to grow, research should continue to focus on the

population of adult novice learners that are self-teaching computer science. Through

75

gaining further understanding of how novice coders use just-in-time resources, we
can discover design changes that improve their learner experience. This process can,
in turn, prepare learners with a stronger foundation for future computer science

education.

76

Appendices

Appendix A: Participant Recruitment Text

Teaching Yourself to Code?
Consider being a part of a 1-2 hour study where we observe and test applications of
people teaching themselves to code.

We are especially interested if you are teaching yourself but are considering formal
computer science education in the future.

If you participate you will receive a $15 gift card.
If interested email: clindema@umd.edu

77

Appendix B: Participant Consent Form

CONSENT TO PARTICIPATE

Project Title

Self-Teaching Computer Science

Purpose of the Study

This research is being conducted by Carrie Lindeman at the
University of Maryland, College Park. We are inviting you to
participate in this research project because you are an adult who
is teaching yourself computer science. The purpose of this
research project is to improve computer science learning
resources.

Procedures

The procedures involve answering questions about your computer
science education and background for 15-20 minutes.

Completing computer science practice problems while being
recorded on video for 20-30 minutes. We will use the attached
laptop camera to record visual and audio of you during the exercise
OR will record a video conference with screen recording and
camera of participants device. Answering follow-up interview
questions for 20 minutes. The total amount of time spent
participating in the study will not exceed 1 hour and 30 minutes.

Potential Risks and
Discomforts

There is no more than minimal risk associated with participating in
this study.

There is a possibility of breach of confidentiality, but the steps taken
to minimize this include only having researchers review recordings
and notes from the participant sessions. Recording and saving
video recordings locally on a password protected device and on a
password protected and encrypted cloud storage service. Deleting
any footage where participants reveal personally identifiable
information.

Potential Benefits

There are no direct benefits from participating in this research.
However, possible benefits include improved experience with
just-in-time computer science learning solutions.

Confidentiality

All information collected in this research is confidential, and
participants will not be identified by their name or other identifiable
indicators. All data will be accessible only by the researchers.

Any potential loss of confidentiality will be minimized by storing data
in password protected cloud storage.

If we write a report or article about this research project, your
identity will be protected to the maximum extent possible. Your
information may be shared with representatives of the University of
Maryland, College Park or governmental authorities if you or
someone else is in danger or if we are required to do so by law.

78

Compensation

You will receive $15 gift card. You will be responsible for any taxes
assessed on the compensation.

If you will earn $100 or more as a research participant in this study,
you must provide your name, address and SSN to receive
compensation.

If you do not earn over $100 only your name and address will be
collected to receive compensation.

Right to Withdraw
and Questions

Your participation in this research is completely voluntary. You may
choose not to take part at all. If you decide to participate in this
research, you may stop participating at any time. If you decide not
to participate in this study or if you stop participating at any time,
you will not be penalized or lose any benefits to which you
otherwise qualify.

If you decide to stop taking part in the study, if you have questions,
concerns, or complaints, or if you need to report an injury related to
the research, please contact the investigator:

Carrie Lindeman
3520G Van Munching Hall
7699 Mowatt Ln, College Park, MD 20742
clindema@umd.edu
717-253-7886

Participant Rights

If you have questions about your rights as a research participant or
wish to report a research-related injury, please contact:

University of Maryland College Park
Institutional Review Board Office
1204 Marie Mount Hall
College Park, Maryland, 20742

E-mail: irb@umd.edu
Telephone: 301-405-0678

For more information regarding participant rights, please visit:
https://research.umd.edu/irb-research-participants

This research has been reviewed according to the University of
Maryland, College Park IRB procedures for research involving
human subjects.

Statement of Consent

Your signature indicates that you are at least 18 years of age; you
have read this consent form or have had it read to you; your
questions have been answered to your satisfaction and you

79

voluntarily agree to participate in this research study. You will
receive a copy of this signed consent form.

If you agree to participate and agree to being video recorded,
please sign your name below.

Signature and Date

NAME OF PARTICIPANT

[Please Print]

SIGNATURE OF
PARTICIPANT

DATE

80

Appendix C: Demographic Survey

Survey
Full name:

Age:
Gender:

Race:

White

Hispanic or Latinx

Black or African American

Native American or American Indian
Asian / Pacific Islander

Other

oo dood

Highest level of education reached:
Institution:
Major or area of focus:

Current Occupation:

What have you used to teach yourself computer science?
Online classes

Textbook

Forums

Online Guides

Tutorial videos

Googling specific questions

Free classes from universities

oo doo0dd

What are your motivations for learning computer science?

How do you plan to use your computer science knowledge?

81

Appendix D: Semi-Structured Interview Questions

Semi-Structured Interview Questions

General Questions

How have you approached learning computer science?

What resources do you use?

What websites do you use?

How often do you work on learning computer science?

What are your goals for your computer science education?

Do you have plans for formal computer science education?
Do you use computer science in your job?

How long have you been trying to learn?

What’s the most frustrating about teaching yourself?

What’s the most rewarding part of learning computer science?

Exercise Based Questions

What did you find most challenging about this exercise?

When did you feel the urge to reach for help?

Can you describe the experience of using the support technology/websites?
What could have made this process easier for you?

How will you move forward to practice these skills?

What're you looking for when you Google something? What makes the
resource useful or not useful?

What resources do you like and why?

When you feel like you need help, where do you go? Any sites?

82

Appendix E: Code Activity Prompts

The following exercises are adapted from Dr. Katherine Gibson from University of
Maryland, Baltimore County. (Gibson, 2019)

Python

Program:

print("Happy birthday to you!")
print("Happy birthday to you!")

print("Happy birthday, dear Maya...")
print("Happy birthday to you!")

Prompt 0:
e What does this program do?
What do you think about this program’s design?
How would you change or improve this program? Why?
Have you written programs like this one before?

Prompt 1:
Rewrite this program so that it uses a function to print the “Happy birthday to you!”
lyric.

Program:

birthdayName = input("Whose birthday? ")
print("Happy birthday to you!")

print("Happy birthday to you!")
print("Happy birthday, dear "+birthdayName+"...")
print("Happy birthday to you!")

Prompt 2:
Rewrite this program so that it uses a function to get the user input.

Program:

83

birthdayName = input("Whose birthday? ")
print("Happy birthday to you!")

print("Happy birthday to you!")
print("Happy birthday, dear "+birthdayName+"...")
print("Happy birthday to you!")

Prompt 3:
Rewrite this program so that it uses functions to get the input and print the song
lyrics. The suggested functions are “getBirthdayName” and “printLyrics”.

Prompt 4:
Explain a code trace of your final program, (can include drawing or doing a stack
trace). Explain why you would break this program up into functions.

Anticipated final program:

def getBirthdayName():
birthdayName = input("Whose birthday? ")
return birthdayName

def printLyrics(name):
print("Happy birthday to you!")
print("Happy birthday to you!")
print("Happy birthday, dear "+name+"...")
print("Happy birthday to you!")

printLyrics(getBirthdayName())

JavaScript

Program:

<script>
console.log("Happy birthday to you!");

console.log("Happy birthday to you!");
console.log("Happy birthday, dear Maya..
console.log("Happy birthday to you!");

84

Prompt 0:
e What does this program do?

e What do you think about this program’s design?

e How would you change or improve this program? Why?

e Have you written programs like this one before?
Prompt 1:

Rewrite this program so that it uses a function to print the “Happy birthday to you!”
lyric.

Program:

<script>

function go(){
var name = document.getElementById("firstname").value;
console.log("Happy birthday to you!");
console.log("Happy birthday to you!");
console.log("Happy birthday, dear "+name+"...");
console.log("Happy birthday to you!");

</script>

<html>

First name:

<input type="text" name="firstname" id="firstname">

<button onclick="go()">Submit</button>

</html>

Prompt 2:
Rewrite this program so that it uses a function to get the user input.

Program:

<script>

85

function go(){
var name = document.getElementById("firstname").value;
console.log("Happy birthday to you!");
console.log("Happy birthday to you!");
console.log("Happy birthday, dear "+name+"...");
console.log("Happy birthday to you!");

</script>

<html>

First name:

<input type="text" name="firstname" id="firstname">

<button onclick="go()">Submit</button>

</html>

Prompt 3:
Rewrite this program so that it uses functions to get the input and print the song
lyrics. The suggested functions are “getBirthdayName” and “printLyrics”.

Prompt 4:
Explain a code trace of your final program, (can include drawing or doing a stack
trace). Explain why you would break this program up into functions.

Anticipated final program:

<script>

function getBirthdayName(){
return document.getElementById("firstname").value;

function printLyrics(){
var name = getBirthdayName();
console.log("Happy birthday to you!");

86

console.log("Happy birthday to you!");
console.log("Happy birthday, dear "+name+"...");
console.log("Happy birthday to you!");

</script>

<html>

First name:

<input type="text" name="firstname" id="firstname">

<button onclick="printLyrics()">Submit</button>

</html>

Java

Program:

public class HBD
{

public static void main(String[] args)

{
System.out.println("Happy birthday to you!");

System.out.println("Happy birthday to you!");
System.out.println("Happy birthday dear Maya...");
System.out.println("Happy birthday to you!");

Prompt 0:
e What does this program do?
e What do you think about this program’s design?
e How would you change or improve this program? Why?
e Have you written programs like this one before?

Prompt 1:
Rewrite this program so that it uses a function to print the “Happy birthday to you!”
lyric.

Program:

87

import java.util.Scanner;

public class HBD {
public static void main(String[] args) {

Scanner input = new Scanner(System.in);
System.out.print("Whose birthday? ");
String birthdayName = input.next();

System.out.println("Happy birthday to you!");
System.out.println("Happy birthday to you!");
System.out.println("Happy birthday dear " + birthdayName +
Pooo)E
System.out.println("Happy birthday to you!");
}

Prompt 2:
Rewrite this program so that it uses a function to get the user input.

Program:

import java.util.Scanner;

public class HBD {
public static void main(String[] args) {

Scanner input = new Scanner(System.in);
System.out.print("Whose birthday? ");
String birthdayName = input.next();

System.out.println("Happy birthday to you!");
System.out.println("Happy birthday to you!");
System.out.println("Happy birthday dear " + birthdayName +

S 6607))8

System.out.println("Happy birthday to you!");

}

Prompt 3:

88

Rewrite this program so that it uses functions to get the input and print the song
lyrics. The suggested functions are “getBirthdayName” and “printLyrics”.

Prompt 4:
Explain a code trace of your final program, (can include drawing or doing a stack
trace). Explain why you would break this program up into functions.

Anticipated final program:

import java.util.Scanner;

public class HBD {
public static String getBirthdayName(){
Scanner input = new Scanner(System.in);
System.out.print("Whose birthday? ");
String birthdayName = input.next();
return birthdayName;

}

public static void printLyrics(String name){
System.out.println("Happy birthday to you!");
System.out.println("Happy birthday to you!");
System.out.println("Happy birthday dear " + name + "...");
System.out.println("Happy birthday to you!");

}

public static void main(String[] args) {
printLyrics(getBirthdayName());

}

89

Appendix F: Searched Phrases

Alert trigger html

Alert function javascript

Alert Trigger HTML

alert function javascript html
Javascript function html for alert
multiple java alert boxes in a row
How to code a function java

how to call a function in java

for loop java

defining variables in python
defining variable passed into function python
Define function java

define function java stackoverflow
Java insert variable into list

Java insert variable into string

java call function within a class

java program

Iterate over range integers python
java iterate over range integers
define class attributes java

pass parameters in java class

does function have to have return type java
How to pass return type java method
set void return type

error, class, interface, or enum expected
instantiateclass java

java cannot find symbol

define string in java

how to load main class in java
function print javascript

vs code run command

vs code run code

vscode hotkey cheat sheet

visual studio code run code mac
print in vs code

script tags

script tags

print hello world in javascript

code snippet for javascript function
code snippet for javascript function that prints a string
javascript print using a function

References

2020 Online Education Trends Report (p. 26). (2020). BestColleges.

https://res.cloudinary.com/highereducation/image/upload/v1584979511/BestC

olleges.com/edutrends/2020-Online-Trends-in-Education-Report-BestCollege

s.pdf

Antonis, K., Daradoumis, T., Papadakis, S., & Simos, C. (2011). Evaluation of the
effectiveness of a web-based learning design for adult computer science
courses. IEEE Transactions on Education, 54(3), 374-380.
https://doi.org/10.1109/TE.2010.2060263

Benigno, V. & Trentin G. (2000). The evaluation of online courses. Journal of
Computer Assisted Learning, (16)3, 259-270.

Bureau of Labor Statistics, U.S. Department of Labor. (2019). Computer and
Information Technology. Occupational outlook handbook, Retrieved from
https://www.bls.gov/ooh/computer-and-information-technology/home.htm

Chatterjee, P., Kong, M., & Pollock, L. (2020). Finding help with programming
errors: An exploratory study of novice software engineers’ focus in stack
overflow posts. Journal of Systems and Software, (159), 1-13.

Darby, R. (2018, February 20). Knowledge on demand: What does ‘just-in-time

learning’ mean for your corporate training? EDGE Learning Media.

https://edgelearningmedia.com/articles/knowledge-demand-just-time-learning

-mean-corporate-training/

91

Gibson, K. (2019). CMSC201 Computer Science I for Majors Lecture 10— Functions
[PowerPoint Presentation].
https://www.csee.umbc.edu/courses/201/spring19/docs/slides/CMSC%20201
%20-%20Lec10%20-%20Functions.pdf

Glassman, E., & Russell, D. (2016). DocMatrix: Self-teaching from multiple sources.
Proceedings of the Association for Information Science and Technology,
53(1), 1-10. https://doi.org/10.1002/pra2.2016.14505301064

Guo, P. J. (2017). Older Adults Learning Computer Programming: Motivations,
Frustrations, and Design Opportunities. Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems, 7070—7083.
https://doi.org/10.1145/3025453.3025945

Larson, Q. (2017, May 4). The 2018 New Coder Survey: 31,000 people told us how
they 're learning to code and getting jobs as.... FreeCodeCamp.Org.
https://www.freecodecamp.org/news/we-asked-20-000-people-who-they-are-a

nd-how-theyre-learning-to-code-fff5d668969/

92

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 35
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

